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Abstract. The one-dimensional free energy model for ferroelectric materials developed
by Smith et al. [28—30] is generalized to two dimensions. The two-dimensional free energy
potential proposed in this paper consists of four energy wells that correspond to four
variants of the material. The wells are separated by four saddle points, representing the
barriers for 90◦-switching processes, and a local maximum, across which 180◦-switching
processes take place. The free energy potential is combined with evolution equations for
the variant fractions based on the theory of thermally activated processes. The model is
compared to recent measurements on BaTiO3 single crystals by Burcsu et al. [8], and
predicitions are made concerning the response to the application of in-plane multi-axial
electric fields at various frequencies and loading directions. The kinetics of the 90◦- and
180◦-switching processes are discussed in detail.
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1 Introduction

The capability of piezoelectric materials such as barium titanate, PZT and PLZT ceramics to both
actuate and sense is due to the non-centrosymmetric nature of the compounds. In actuator mode, an
applied electric field changes the ionic structure of the material, resulting in reversible or irreversible
strains. The application of a mechanical stress also alters the ionic configuration generating the voltages
measured in piezoelectric sensors. The two mechanisms are called the converse and direct piezoelectric
effects, respectively. The high sensitivity and repeatibility of the piezoelectric effects make the mate-
rials the current choice for applications such as nanopositioning, thin-film-based micro-pumping and
sensing. However, the polar mechanisms which provide piezoelectric materials with the dual converse
and direct effects and extreme electromechanical sensitivity, also produce varying degrees of hysteresis
and constitutive nonlinearities. Both, the hysteresis and the constitutive nonlinearities must be ac-
commodated for high performance applications utilizing piezoelectric actuators and sensors, and for
this purpose an accurate and efficient model of the material behavior has to be developed.
In principle, there have been two approaches to modeling of the nonlinear behavior of piezoelectric

materials, one is a macroscopic phenomenological approach and the other one a mesoscopic lattice-
based approach. In the former, a certain number of macroscopic internal variables are chosen to
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represent experimental measurements. An early modeling attempt in this category was made by Chen
[9] and Chen and Madsen [10]. Their work uses a single scalar internal state variable that represents the
extent of alignment of dipoles. A detailed account of the thermodynamic structure of phenomenological
models for ferroelectricity is given by Bassiouny et al. [4,5] and Bassiouny and Maugin [6,7]. Their
thermodynamic formulation uses the concept of internal variables to capture a yield function that
defines the domain of reversible behavior within the space of applied fields. Recently, Cocks and
McMeeking [13] have developed a phenomenological model that simulates the nonlinear response of
ferroelectrics to electrical and mechanical loading. They use the average state of remnant strain and
remnant polarization in the polycrystal as internal state variables. Kamlah and Tsakmakis [18] use
the remnant strain and remnant polarization for the constitutive response of ferroelectrics. However,
they decompose remnant strain into two parts: one is due to remnant polarization and the other is due
to ferroelastic switching. Their one-dimensional model is extended to allow multi-axial loading [19].
Following the decomposition of Kamlah and Tsakmakis [18], Kim and Kwak [21] developed a one-
dimensional model for the nonlinear behavior of a piezoelectric wafer by adapting a rate-dependent
viscoplastic mechanical model.
The second type of approach is based on a description of the switching processes at the crystal lat-

tice scale. In a tetragonal lattice of perovskite crystals, there are six distinct types of states. Depending
on applied electric and mechanical loading, each of the six states has a different energy level, and the
lattices in unstable states tend to change their polarization direction into the polarization direction of
more stable states. By incorporating these features into a switching model, Hwang et al. [16] were able
to reproduce the main effects found in the macroscopic response of ferroelectric polycrystals, namely:
dielectric hysteresis, butterfly hysteresis in strain versus electric field, and mechanical nonlinearity.
Hwang et al. argued that switching occurs when the work done by local fields during a given ferro-
electric switching event exceeds a critical value. They used an averaging procedure to account for the
variety of crystallographic orientations and assumed uniform stress and electric fields. However, their
model showed a deficiency in a comparison with measurements of uniaxial material response [22]. In
order to solve the inconsistency, Hwang et al. [17], Chen and Lynch [11,12], Huber et al. [14] incor-
porated the local interaction between adjacent regions of material with differing polarization states,
which was neglected in the original work of Hwang et al. Kim and Jiang [20] also proposed a similar
constitutive and finite element model adopting a Reuss type micromechanics assumption. Their model
consists of Helmholtz free energy, switching criterion and switching kinetics; the rate of switching is
assumed to be proportional to the thermodynamic driving force. All of the above models are based on
rate-independent or viscoplasticity-type switching evolution equations. The mass fractions of different
types of states of the materials are chosen as internal variables, and their evolutions are phenomeno-
logically described as a function of the amount of energy released during a switching process or of a
thermodynamic driving force. However, it has not been shown yet that these evolution equations are
capable of simulating the transient dynamics behavior and the closure of biased minor loops in the
hysteresis response of the material.
To solve this problem, Smith et al. [28—30] recently regarded ferroelectric switching as a thermally

activated process and developed a one-dimensional model based on kinetic switching equations. In
this approach, motivated by the shape memory alloy model developed by Müller, Achenbach, and
Seelecke [1,2,23,27], a one-dimensional Helmholtz free energy potential consisting of two convex energy
wells and a concave energy barrier (spinodal region) between the wells is proposed as a function of
polarization. Depending on the applied electric field, dipoles jump from one energy well to another
according to a competition between thermal activation and energy barriers. Though their model has
been successful in simulating the transient dynamics and minor loop behavior of the material, it
features only two energy wells, and as a result it can not model 90◦-switching processes.
This has been improved by Sahota [26], who extended the pure polarization model to include a 1-D

strain component and a corresponding 90◦-variant. The approach allows to account for the effect of
mechanical stress in one direction; however, Sahota only gives a qualitative picture based on purely
convex energies without spinodal regimes, and no comparison with experimental data is made.
In the present article, we propose an extension of the model by Smith et al. to the two-dimensional

case. In contrast to the full 3-D case, this still allows a graphic representation of the relevant energy
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Fig. 1. Lattice structure in a paraelectric and ferroelectric PbTiO3 crystal, 90◦- and 180◦-switching processes.

functions through surface and contour plots. In order to discuss and illustrate the complexities arising
in multiple dimensions, we therefore treat the 2-D case in this paper before addressing the development
of a full 3-D model at a later stage. We also confine attention to the case of pure electric loading and
study the effects of mechanical stresses in a forthcoming paper [3]. We discuss the additional complex-
ities introduced by the multi-dimensional energy landscape, e.g., the determination of transformation
trajectories due to the field-dependent movement of saddle points and their impact on the transition
probabilities for the transformation from one phase to the other. An extended set of evolution equations
accounting for the increased number of variants is presented, which is subsequently solved numerically
for several cases of electric loading. The model is compared to polarization hysteresis loops recently
observed by Burcsu et al. [8] for BaTiO3 single crystals, and predictions are made for multi-axial
electrical loading and various loading rates.

2 Free Energy Function

2.1 Helmholtz free energy function

Energy formulations for commonly employed ferroelectric materials can be motivated by changes oc-
curing in the ionic structure during domain switchings or phase transitions in response to applied
electric and stress fields. For illustration, we focus on PbTiO3 which is isostructural with the mineral
perovskite (CaTiO3). The crystal lattice of a perovskite material, as shown in Figure 1(a), exhibits a
cubic configuration at temperatures above the Curie point TC (paraelectric phase) and a tetragonal
form below TC (ferroelectric phase). Specifically, a unit cell of the material will have a cubic structure
at temperatures T>TC with the Ti+4 ion located at the center of the lattice, and it will be in one
of six tetragonal structures at temperatures T<TC with the Ti+4 ion biased along one of the three
mutually orthogonal crystallographic directions, see for example Figure 1(b). Net polarization in the
lattice is zero in the former case, while it has a finite value in the latter case. The position of Ti+4 is
not fixed but varies under an electric field. Under an electric field opposite to the polarization direc-
tion of the lattice, the Ti+4 ion moves in the direction of the applied field and, when the electric field
exceeds a critical value (coercive field), the net polarization of the lattice is reversed, Figure 1(c). This
type of process is called 180◦-switching, while the application of an electric field perpendicular to the
polarization direction of the lattice, leads to what is called 90◦-switching as shown in Figure 1(d).
Smith et al. [30] have proposed a one-dimensional free energy potential that models 1800-switching

processes with two energy wells and one local maximum between the two wells, as shown in Figure 2. In
Figure 2, the left plot shows the one-dimensional Helmholtz free energy density ψ1(P1), and the center
and right hand side plots are the Gibbs free energy densities g1(P1;E1) under increasing electric field.
The latter are related to the Helmholtz free energy by the Legendre transformation g1 = ψ1 − E1P1.
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Fig. 2. One-dimensional Helmholtz free energy ψ1 and Gibbs free energy g1 for increasing field E1.

The application of an electric field distorts the Gibbs energy landscape and a dipole switch occurs
when the equilibrium value determining the Ti+4 position exceeds the unstable equilibrium due to the
central O−2 ion pairs, as shown in the center and right plots of Figure 2.
In the present paper, the one-dimensional free energy of Smith et al. is generalized to a two-

dimensional free energy potential that consists of four energy wells, four saddle points and one local
energy maximum. In the two-dimensional energy model, the Helmholtz free energy function per unit
reference volume is given by

ψ(P1, P2) = ψ1(P1) + ψ(P2) + aP 21P
2
2 , (1)

ψ1(P1) =


1
2η (P1 + PR)

2 if P1 ≤ −PI ,
1
2η (PI − PR)(P

2
1 /PI − PR) if −PI ≤ P1 ≤ PI ,

1
2η (P1 − PR)

2 if PI ≤ P1,
(2)

ψ2(P2) =


1
2η (P2 + PR)

2 if P2 ≤ −PI ,
1
2η (PI − PR)(P

2
2 /PI − PR) if −PI ≤ P2 ≤ PI ,

1
2η (P2 − PR)

2 if PI ≤ P2,
(3)

where ψ1 and ψ2 are the one-dimensional Helmholtz free energy potentials in the respective P1- and
P2- directions that are used by Smith et al. The term PI (0 < PI < PR) denotes the positive value of
polarization, at which the convexity of ψ1 and ψ2 changes along the P1- and P2- axes, respectively, PR
stands for the polarization value at the minima of the four energy wells, and η is a material parameter
corresponding to the inverse dielectric susceptibility of the material. The quantity PR is also called the
remnant polarization, and PI is the polarization, at which the material starts to switch upon reaching
the coercive electric field. The third term in (1) is a coupling term responsible for the four energy
wells to be located along the P1 and P2 axes. Surface and contour plots for the Helmholtz free energy
potential given by (1) are shown in Figures 3(a) and 3(b), respectively. In Figure 3(b), one can see four
energy wells denoted by W1, W2, W3 and W4, each of which being located at (PR, 0), (0, PR), (−PR, 0),
and (0,−PR) in the counterclockwise direction, respectively. In the present paper, the notations W1,
W2, W3 and W4 are used to denote the energy minimum states in the corresponding wells as well as
the wells themselves. The four saddle points are denoted as S1, S2, S3 and S4 in the figure and are
located at (PC , PC), (−PC , PC), (−PC ,−PC), and (PC ,−PC), respectively, where PC is defined by

PC ≡
p
(η/2a)(PR − PI)/PI . (4)

In contrast to the 1-D case, there is no longer a unique location at which the transformation from
one phase to another occurs. In fact, due to thermal fluctuations, there is an infinite number of paths
across the "ridges" in the energy landscape that the lattice elements can take for the transformation
from one well into another. A related problem has also been treated by Puglisi and Truskinovsky
[24,25] in the context of a system of transforming bi-stable elements. They illustrate the various
transformation trajectories of elements with different barriers and construct Peierls energy landscapes
from the projections of these trajectories across saddle points. To simplify the picture in our case, we
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Fig. 3. Two-dimensional Helmholtz free energy plots.

will also assume that the transformations always occur across the saddle points, as these represent
the minimum energy barriers. This assumption is motivated by the observation that, even though
some thermal activation is certainly present in the material, we are dealing with a solid body, and we
can assume it to be relatively small compared to the barrier height of the Gibbs free energy potential.
Hence, there will be only negligible fluctuation in the transformation trajectories, and the saddle points
represent the energy barriers for four different types of 90◦-domain switching processes. A local energy
maximum is located at the center of the plot, and it is across this maximum that the 180◦-domain
switching processes occur. Finally, it is to be noted that the two-dimensional free energy given by
(1)-(3) reduces to the one-dimensional model of Smith et al., only if the electric field is applied in the
±P1-direction in Figure 3 and no 90◦-switching is allowed. In this case, only 180◦-domain switching
occurs between dipoles in W1 and W3 wells, and since P2 = 0 along the P1 axis, the two-dimensional
free energy (1) reduces to ψ(P1, P2) = ψ1(P1) +

1
2η PR(PI − PR).

2.2 Gibbs free energy function

The last section discussed the details of the Helmholtz free energy function, which, due to Ei = ∂ψ/∂Pi,
is the primary constitutive quantity to be determined from (Ei, Pi)-diagrams. The free energy that
dictates the kinetics of the phase transformations, however, is the Gibbs free energy, and it is really
its energy barriers and minima that are of primary interest.
In the two-dimensional model, the work of a dipole in an electric field is combined with the Helmholtz

energy ψ given by (1) to yield

g(P1, P2;E1, E2) = ψ(P1, P2)−E1P1 −E2P2, (5)

where E1 and E2 are the components of applied electric field in the P1 and P2 directions, respectively.
If an electric field of magnitude E is applied at an angle θE with respect to the positive P1 axis in the
counterclockwise direction, then E1 = E cos θE and E2 = E sin θE . The semicolon notation used in (5)
indicates that g is a function of Pi as shown in Figure 3; the electric field Ei represents a parameter
shaping the energy landscape by changing the locations of local minima, local maximum and saddle
points.

3 Basic Model Equations

In order to describe the kinetics of the switching processes, we consider a representative volume element,
composed of mesoscopic lattice elements, each of which see the energy landscape introduced above.
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Due to thermal activation, present in every physical body at non-zero temperature, the polarization
of a lattice element fluctuates about its equilibrium value in the specific well, which characterizes
its phase (±180◦, ± 90◦ or W1 −W4). When an electric field is applied in a certain direction, the
corresponding energy barriers are lowered, and switching can occur from one state to another.
The average polarization of the representative volume element in the i-direction is given by

P̄i =
4X

α=1

xαP
α
i . (6)

This expression is the weighted sum of the average polarizations of all lattice elements Pα
i in the indi-

vidual wells, and the weighting factors are the respective phase fractions xα. The average polarizations
Pα
i can be computed from statistical arguments, which are based on the probability to find a particular
polarization state (P1, P2)

µ(P1, P2) = C exp

½
−g(P1, P2;E1, E2)

kBT/VLE

¾
. (7)

This is a typical Boltzmann expression with a normalization constant C, kB and T are Boltzmann’s
constant and the absolute temperature, g is the Gibbs free energy density introduced above, and VLE
is the volume of a lattice element. The average polarization in phase α is then obtained from

Pα
i =

ZZ
Pi µ (P1, P2) dP1dP2, (8)

with the domain of integration extending according to the limits used in the energy definition (2) and
(3). In the limiting case of vanishing thermal activation, the probabilities degenerate to Dirac-Delta
functions, and the average values coincide with the polarizations at the minima of the energy wells.
The phase fractions xα in Eq. (6) are determined from a set of evolution equations, motivated by

the theory of thermally activated processes. The rate of change of the phase fraction in energy well
Wα is given by

·
xα =

4X
β=1,β 6=α

¡
µβα xβ − µαβ xα

¢
α = 1, 2, 3, 4, (9)

which expresses the fact that xα can change due to a gain or loss of lattice elements from or to
neighboring wells. These gains and losses are proportional to the number of lattice elements in the
neighboring wells, xβ , and the phase fraction in the well of interest, xα. The proportionality factors
µαβ are the transition probabilities for a switch from Wα-well to Wβ-well, and they are computed
from statistical thermodynamics as

µαβ =
1

ταβ
exp

µ −∆gαβ
kBT/VLE

¶
, α, β = 1, 2, 3, 4, α 6= β. (10)

They are the product of the probability of finding a lattice element on top of the barrier between Wα-
and Wβ-wells, and the frequency 1/ταβ with which it attempts to cross this barrier. It is well known
from statistical mechanics that these frequencies depend on the curvature of the energy well, and if
this well is not rotationally symmetric, the frequencies will be anisotropic. For the sake of simplicity,
we will not update the frequencies, when the positions of the saddle points move, and we will assume
τ90 = τ180 ≡ τ for two different relaxation times τ90 and τ180, representing different time scales for the
two types of switching processes. The term ∆gαβ := g(Pαβ

i ;Ej)− g(P α
i ;Ej) is the difference between

the energy on top of the barrier at Pαβ
i and the energy at the minimum of Wα-well, Pα

i . Note that
expression (10) is again the low thermal activation limit of the transition probability, based on the
same assumption that was already introduced with the definition of the saddle point as the actual
barrier.
The saddle points, local maximum and local minima are not fixed but move in the (P1, P2)-plane

depending on the applied electric field. Their locations can be found by solving the coupled nonlinear
algebraic equations, ∂g/∂P1 = 0 and ∂g/∂P2 = 0, because the gradient of the Gibbs free energy has
to be zero in the P1- and P2-directions at the extremum points. Usually, multiple solutions exist in
the simultaneous equations, and we determine the type of extremum point from the following criteria:
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Fig. 4. Location of extremum points of Gibbs free energy under increasing electric fields applied in the +P1-direction.

If D(P1, P2) > 0 and A(P1, P2) > 0 =⇒ local minimum at (P1, P2),
If D(P1, P2) > 0 and A(P1, P2) < 0 =⇒ local maximum at (P1, P2),
If D(P1, P2) < 0, =⇒ saddle point at (P1, P2),

(11)

where D and A are discriminant equations defined by

D ≡
¯̄̄̄
¯

∂2G
∂P 2

1

∂2G
∂P1∂P2

∂2G
∂P1∂P2

∂2G
∂P 2

2

¯̄̄̄
¯ , A ≡ ∂2G

∂P 2
1
. (12)

The evaluation of these equations shows that the characteristics of the energy landscape may change
drastically during the course of a loading/unloading process. Hence, we have to carefully analyze the
landscape in order to define the correct energy barriers and the corresponding transition probabilities.
The sequence displayed in Figure 4 illustrates several degeneracies that may occur, and their treatment
is discussed in the sequel.
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The figure shows the movement of various extremal points while the electric field increases in the
+P1-direction. In the figure, the solid line represents ∂G/∂P1 = 0 and the dashed line ∂G/∂P2 = 0.
Therefore, the points at which the solid and dashed lines intersect are extremal points. Figure 4(a)
shows the various extremal points at zero electric field. At E = E1, the saddle points S2 and S3 move
vertically toward the P1-axis and the local maximum moves leftward. They meet at (−PC , 0), and the
local maximum converts to a saddle point. After that, the common saddle point moves leftward on
the P1-axis until it meets the local minimum W3 at (−PI , 0), as shown in Figure 4(c). During this
period of time, the energy barriers for the 90◦-switching processes between the W2- ( or W4-) well and
the W3-well as well as for all 180◦-switching processes are evaluated at the common saddle point. If
the electric field is further increased, the local minimum W3 and the common saddle point merge at
the border between the definition ranges of the piecewise energy function and subsequently vanish. In
this case, the values of minimum Gibbs energy and energy barriers are evaluated at the same location
(−PI , 0). As a result, the transition probabilities calculated by (10) for the switching processes from
the W3-well to the W1-, W2- or W4-wells have maximum values, i.e., µ31 = µ32 = µ34 = 1/τ . On the
other hand, the saddle point S1 moves up to (PC ,+PI) and merges with the local minimum W2 when
the field is increased, as shown in Figure 4(d). After this, the local minimum W2 and the saddle point
S1 do no longer exist, and the transition probability for the 90◦-switching from the W2-well to the
W1-well is µ21 = 1/τ , because the values of minimum energy in the W2-well and the energy barrier
for 90◦-switching between W2-well and W1-well are evaluated at the same location (PC ,+PI). The
same argument holds for switching between the W4-well and the W1-well. Comparing Figures 4(c)
and 4(d), we see that the transition probabilities µ32 and µ34 reach their maximum value 1/τ at about
E = E2, but those of µ21 and µ41 have the same maximum value at about E = E3. This means that
90◦-switching in the later period of a process proceeds at a much slower speed than the 90◦-switching
in the early period.
It is evident that the determination of the transition probabilities in the multi-dimensional case

requires careful tracking of the loading process. Once determined, the µαβ are then used to assemble

the RHS of the ODE system (9). Using the phase fraction constraint
4P

α=1
xα = 1, we can finally reduce

the four differential equations (9) to a set of three coupled differential equations:

·
x1 = −(µ12 + µ13 + µ14 + µ41)x1 + (µ21 − µ41)x2 + (µ31 − µ41)x3 + µ41,·
x2 = (µ12 − µ42)x1 − (µ21 + µ23 + µ24 + µ42)x2 + (µ32 − µ42)x3 + µ42,·
x3 = (µ13 − µ43)x1 + (µ23 − µ43)x2 − (µ31 + µ32 + µ34 + µ43)x3 + µ43.

(13)

Complemented by suitable initial conditions, this ODE system can be integrated numerically for a
prescribed electric field input to yield the phase fraction evolution, and together with the algebraic
equation (6), the time-dependent polarization can be computed. Note that the character of the ODEs
introduces a natural time scale through the common relaxation time τ , which allows to predict rate-
dependent effects in a natural way.

4 Results and Discussions

In this section, the response of the model described in the previous sections is calculated for several
different cases of pure electric loading. We consider a single crystalline material with crystallographic
direction coinciding with the global (P1, P2) coordinate frame. Therefore, four kinds of dipoles exist
in the material with their crystallographic c axes in the ±P1- and ±P2-axes, respectively. First, we
simulate a quasistatic polarization hysteresis loop of a BaTiO3 single crystal recently observed by
Burcsu et al. [8], see Figure 5. The material parameters in (14) are chosen to fit the experimental
observation.

τ = 1.3× 10−2 sec, PR = 0.26 C/m
2, η = 7× 107 J ·m/C2,

V = 1.5× 10−24 m3, PI = 0.259 C/m
2, a = 2× 108 J ·m5/C4,

T = 298 0K.
(14)
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Fig. 5. Quasistatic polarization hysteresis of a BaTiO3 single crystal, measurements by Burcsu et al. [8], (θE = 0, fE =
0.05 Hz).

The applied electric field is sinusoidal, and its amplitude and frequency are Eamp = 1.1 MV/m and
fE = 0.05 Hz, respectively. The angle of the applied electric field is denoted by θE , where θE is
measured from the +P1 axis in the counterclockwise direction. In Figure 5, the solid line represents
the result of the simulation and the dashed line the measured hysteresis loop. The hysteresis loop
itself exhibits a very sharp transition, typical for a single crystal, and it is rather thin, indicative
of a low coercive field. Toward the end of the transformation, the slope decreases smoothly until
saturation is reached. We will show this feature to be a hint at the potential micro-mechanism of the
transformation, which presents itself as a two-step process with different kinetics due to the presence
of 90◦- and 180◦-switching.

We will first show that the 1-D two-variant model by Smith et al. is not able to capture this
behavior. The prediction of the one-dimensional model can be obtained from the two-dimensional
model by restraining all 90◦-switching processes, that is, by allowing 180◦-switching only. Identical
material parameter values are used for the one-dimensional calculation, and in Figure 6, we compare the
response of the two-dimensional model (solid line) with that of the one-dimensional model (dashed line).
While the 2-D model reproduces the measured change in slope toward the end of the transformation,
the 1-D version predicts a constant value for the coercive field. This can be understood by comparing
the evolution of the phase fractions in both cases. Figure 7(a) shows these evolutions over an electric
field range from −0.1 MV/m to 0.7 MV/m in the one-dimensional case, and Figure 7(b) shows the
two-dimensional case. Comparing the two figures, we see that the spill-out process of lattice elements,
initiated once the barrier shielding well W3 is eliminated, is identical in both cases, and they follow
the same curve in the (P,E)-diagram initially. In the 2-D case, however, these elements do not all
jump into the W1-well but into the two lateral wells W2 and W4 as well. From here, they transform
further on to W1, but in a delayed manner, see again Figure 7(b). This is due to the circumstance that
they are trapped in wells, of which the barrier to W1 first has to be eliminated by further increase
in field. In fact, inspection of the phase fraction diagram shows that the combined percentage of W2

and W4 fractions is as high as 70% at the maximum, and we conclude that the more realistic 2-D
model predicts a two-step transformation through repeated 90◦-switching processes, which is also well
in agreement with the observation in Figure 5.
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Fig. 6. Comparison of one- and two-dimensional hysteresis curves (θE = 0, fE = 0.05 Hz).
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Fig. 7. Evolution of phase fractions in (a) one- and (b) two-dimensional model (θE = 0, fE = 0.05 Hz)

Next, we discuss the response of the model to electric fields applied in three different directions
θE = 0, π/8 and π/4. We set the initial phase fractions to {x1, x2, x3, x4}|t=0 = {0, 0, 1, 0}, and
therefore, initially, all lattices in the material are in the W3-well. The predicted polarization hystereses
during the first loading cycle, with polarizations calculated in the direction of applied fields, are shown
in Figure 8, and the corresponding plots of phase fraction evolution in Figure 9. In Figure 8, the solid
line corresponds to the electric field of θE = 0, the dashed one to θE = π/8, and the dashed and dotted
one to θE = π/4. The memory of the initial state is quickly erased, and we would observe steady-state
hysteresis loops after the first cycle in all three cases. It is shown in Figure 8 that the value of maximum
polarization is the largest for the electrical load at θE = 0 and the lowest for the electrical load at
θE = π/4. This is due to the circumstance that the maximum phase fraction values depend on the
angle of applied electric field as shown in Figures 9(a) and 9(c). At the largest positive electric field,
they are approximately {1, 0, 0, 0} and {0.5, 0.5, 0, 0} for θE = 0 and π/4, respectively. This reflects
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Fig. 8. Hysteresis curves at three different loading angles ( fE = 0.05 Hz).

the fact that the electric field, when applied under increasing angle from 0 to π/4, lowers the depth
of the W2-well, as much as that of the W1-well at θE = π/4, resulting in the equal probabilities of
switching to the W1- and W2-wells. These results are not compared to measurements by Burcsu et al.,
who did not study the effect of different loading direction, and probably are most closely related to
the observations by Huber and Fleck [15], who studied loading in fixed directions, but with specimens
cut under different orientations.
Finally, in Figure 10, we show the effect of loading rate on the polarization hysteresis. In this case,

too, there are no measurements available for comparison yet, and the results have more of a predictive
character. We apply the electric loading at three different frequencies, i.e., at fE = 0.05Hz, 0.3Hz and
1Hz, and Figures. 11(a), (b) and (c) show the evolution of phase fractions at the respective loading
frequencies vs. electric field in the range from E = −0.1 MV/m to E = 0.7 MV/m. In Figure 10, it is
seen that the hysteresis loop gets wider with increasing loading frequency. This effect is small in the
initial phase of the transformations, but it becomes very pronounced during the later period of the
switching processes, when 90◦-switchings occur from the W2- and W4-wells to the W1- or W3-wells.
Figure 11 shows that the rate of 90◦-switching from W2- and W4-wells to the W3-well gets slower,
which reflects the inertia of the transformation. This behavior is dictated by the ratio of the relaxation
times τ180/90 and the rate of loading and has to be determined from experimental data.

5 Conclusions

The one-dimensional free energy model for ferroelectrics by Smith et al. is generalized to a two-
dimensional model that consists of four energy wells, four saddle points and one energy maximum. In
the proposed model, polarized mesoscopic lattice elements jump from one energy well to another across
barriers between neighboring wells. Evolution equations for the four relevant variant phase fractions are
derived based on ideas from the theory of thermally activated processes and statistical thermodynamics.
The corresponding transition probabilities are the product of a Boltzmann term giving the probability
to reach the top of an energy barrier and an attempt frequency, which is the inverse of a characteristic
relaxation time. The effect of an applied electric field on the multi-dimensional energy landscape and
the barriers in particular is discussed in detail, along with the algorithm for the determination of the
transition probabilities.
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Fig. 9. Evolution of phase fractions at three different loading angles (fE = 0.05 Hz)

The prediction of the model is compared with a recently observed polarization hysteresis curve
for a BaTiO3 single crystal. Using the material parameters determined from the comparison, the
response of the model to multiaxial in-plane electric field loading at various frequencies is calculated.
The simulations show that the response of the model strongly depends on the direction of the applied
electric field. The largest polarization is obtained when the electric field is applied at θE = 0, i.e., in
one of the principal directions of the free energy potential, and the smallest at θE = π/4. The model
also predicts effects of loading rate, and it is observed that the hysteresis loops become wider with
increasing loading frequency, this effect being particularly remarkable during the later stage of the
switching process. Inspection of the variant fraction evolution reveals that switching takes place as
a two-stage process with the kinetics being determined by the energy landscape and the relaxation
times.
In another paper [3], the implementation of mechanical stresses and the extension to polycrystalline

behavior is discussed, and a three-dimensional version of the model is in development.
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Fig. 10. Hysteresis curves at three different loading rates (θE = 0).
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(b) fE = 0.3 Hz
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(c) fE = 1 Hz

Fig. 11. Evolution of phase fractions at three different loading rates (θE = 0)
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